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Mutacin 1140, a class 1 bacteriocin, is produced by Streptococcus mutans and 

belongs to the type A lantibiotic family. Experiments were done to optimize production 

of mutacin 1140 in minimal media enabling a more cost efficient downstream 

purification method. The development of a small volume fermentation method enabled a 

rapid screen of several variables in a standard shaking incubator. This method provided a 

fast approach for determining components that promote mutacin 1140 production in 

minimal media broth. Lactose was determined to be the optimal carbon source for 

mutacin 1140 production. High concentrations of CaCl2 (0.3% w/v) and MgSO4 (0.77% 

w/v) promoted an increase in mutacin 1140 production, while ZnCl2 and FeCl3 appeared 

to impair production. Optimization of mutacin 1140 production in minimal media 

resulted in more than a 100-fold increase in production compared to the base medium 

used to begin our optimizations. The yield has been estimated by RP-HPLC to be 10 

mg/L.   

Key words: Mutacin 1140, Lantibiotic, Streptococcus mutans, fermentation, minimal 
medi
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CHAPTER I 

INTRODUCTION 

 
Today’s world is facing a problem of bacterial antibiotic resistance. To solve this 

problem it is necessary to find new and better antimicrobial substances. A large body of 

research and investigation has been going on over the past few decades for new 

antimicrobials with novel mechanisms of action. Bacteriocins are a group of antibiotics 

which are proteinaceous in nature [1].  There are different kinds of bacteriocins which 

have been characterized to date and among them Class I are characterized by being small 

peptide inhibitors containing modified residues. Class II are characteristically larger, 

approximately 40 amino acids, and the mechanism of action is generally by disrupting 

bacterial membranes. These two classes of bacteriocins are most studied due to their 

abundance and their potential use for industrial applications [2]. Of interest are 

bacteriocins produced by Streptococcus mutans which are known as mutacins [3]; in 

particular, a class I bacteriocin called mutacin 1140 (Figure 1). Mutacin 1140 belongs to 

a subgroup of class I bacteriocins called lantibiotics. Lantibiotics are defined as 

lanthionine-containing antibacterial peptides with dehydrated amino acid residues and 

thioether bridges resulting from posttranslational modifications [1,4]. The term lantibiotic 

comes from the presence of unusual amino acids called lanthionine (Lan) and �- 

ethyllanthionine (MeLan) (Figure 2). In addition to Lan and MeLan residues, there 

areother modified amino acids found in mutacin 1140 which include 2,3- 
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didehydroalanine (Dha), 2,3 didehydrobutyrine (Dhb), and the unsaturated lanthionine 

derivatives such as S-amino vinyl-D-cysteine (AviCys). Mutacin 1140 is composed of 

four lanthionine rings. The C-terminal lanthionine rings C and D overlap, which adds to 

the complexity of the structure of this antimicrobial peptide.  

Figure 1.   Covalent structure of mutacin 1140 [5]. 
 

 
 

 

 

 

 

 

 
Figure 2.   Diagram of the modified amino acid residues present in mutacin 1140[5]. 
 
 

There are two groups of lantibiotics: Type A and Type B, which are grouped 

based on their structural and functional features. Type A lantibiotics are elongated, 

cationic peptides up to 34 residues in length. Type A lantibiotics which include nisin, 

gallidermin, epidermin, and mutacin 1140 act by disrupting the membrane integrity of 

target organism via a specific interaction to the membrane component lipid II [6-23]. 

Type B lantibiotics, such as actagardine, are globular peptides containing up to 19 
2 
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residues in length. They act through disrupting enzyme function e.g., inhibition of cell 

wall biosynthesis [24,25].  

A series of enzymes act on a ribosomally synthesized prepeptide to produce a 

mature lantibiotic molecule (Figure 3, Step1) [5]. In mutacin 1140, mutA gene (LanA 

gene) encodes a ribosomally synthesized prepeptide containing serine and threonine 

residues. The mutB enzyme (LanB) is responsible for the dehydration of the serine and 

threonine residues to give Dha and Dhb, respectively. Cysteine residues located upstream 

of the dehydrated residues form a thioether linkage to these dehydrated amino acids [5]. 

MutC enzyme (LanC) is responsible for the subsequent addition of cysteine sulfhydryl 

groups to the didehydro amino acids, which results in the thioether ring formations 

(Figure 3, Step 2). The mutD enzyme (LanD) catalyzes the oxidative decarboxylation of 

the C-terminal cysteine, which gives a C-terminal S-aminovinyl-D-cysteine (AviCys) 

residue (Figure 3, Step 2). MutT (LanT), an ABC transporter, transports the modified 

peptide outside of the cell where mutP (LanP) an extracellular protease cleaves the leader 

sequence of the modified prepeptide (Figure 3, Step 3) [5]. 
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Figure 3.   Diagram of the enzymatic modification taking place for mature mutacin 1140 

production [5]. 
 

Mutacin 1140 has significant commercial value and broad applicability and 

practical methods for its production would have a significant economic impact. Mutacin 

1140 has activity against essentially all tested Gram-positive bacteria and in particular 

certain medically important Gram-positive bacteria such as Staphylococcus aureus, 

Streptococcus pneumonia, Enterococcus faecalis and Listeria monocytogenes. Mutacin 

1140 has also been  shown to have potential oral applications for fighting tooth decay and 

is a key feature in the development of replacement therapy [26-29]. The producing strain 

of mutacin 1140, S. mutans JH1140, was engineered to make alcohol instead of lactic 

acid, which prevents the bacterium’s ability to erode tooth enamel, thus preventing the 

formation of cavities. This strain has been shown to displace disease-causing strains of S.

4 
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mutans from the teeth of experimental animals due to its ability to produce mutacin 1140, 

and thereby indicating possible life-long protection against tooth decay [27,28]. 

As mentioned above mutacin 1140 has been shown to have desirable 

characteristics for the treatment of Gram positive infections [28,30]. The principal reason 

that compounds like mutacin 1140 have not been developed for therapeutic applications 

is due to the general difficulty of obtaining these molecules in sufficient, cost effective 

amounts to enable their testing and commercialization.  Of the lantibiotics characterized 

to date [1], only the Type A (I) lantibiotic nisin A, produced by Lactococcus lactis has 

found wide application as a food preservative for the past 50 years.  It is important to note 

that the bacterium L. lactis produces nisin A when used as a starter culture and the 

antibiotic itself has never been purified and directly added as a preservative. Fairly 

recently, a purification protocol for nisin A has been filed as a US patent application 

(USPA 20040072333), which utilized a cocktail of expensive proteases followed by 

column chromatography. There is no published, commercially viable procedure for the 

purification of nisin A. The problem of finding a commercially viable procedure for 

purifying nisin A is also true for mutacin 1140, as well as many other lantibiotics.   

Fermentations have been optimized for the lantibiotics gallidermin and mutacin 

NY266 using complex media, such as yeast extract, high (5%) calcium chloride 

concentrations and using a large inoculum (10% v/v). These authors have reported 

production levels over 200 mg/L [31-35]. Using similar conditions and media 

composition about 50 mg/L of mutacin 1140 in a 3L bioreactor controlling temperature, 

pH, and oxygen is achievable [36].  Extraction of mutacin 1140 from this complex 

medium by RP-HPLC methods is also achievable, but not a commercially viable 
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approach because of the high cost for the purification. Synthetic approaches to making 

lantibiotics is extremely costly involving more than 60 chemical steps [37].  A semi-

synthetic approach for producing nisin has been described, in which cell and membrane 

extracts recovered from the nisin producing organism are  mixed with nisin prepropeptide 

made by an E. coli expression system [38]. However, the yield of antibiotic produced by 

this approach is very low. This research will attempt to identify components important for 

the production of mutacin 1140 in a minimal medium, which will enable future studies 

aimed at developing a cost effective approach to purifying the mutacin 1140. 
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CHAPTER II 

METHODS AND MATERIALS 

 
All media was purchased from Difco Laboratory (Detroit, MI) and chemicals 

were purchased from Fisher Scientific (Pittsburgh, PA) and were the highest grade, 

unless otherwise stated. 

 
Bacterial Strains 

Bacterial strains used in this study include: Streptococcus mutans JH1140 ATCC 

55676 and Micrococcus luteus ATCC 272. S. mutans was used for the production of 

mutacin 1140. M. luteus was used as an indicator organism for detection of mutacin 1140 

production.   

S. mutans was first screened for colonies that would grow on minimal media and 

maintain antimicrobial activity. Colonies of S. mutans were picked from plates grown on 

Todd Hewitt-yeast extract (30 g Todd Hewitt broth/L, 3 g yeast extract/L) and plated on 

modified M9 agar (M9 medium, supplemented with casamino acids (10 g/L), CaCl2 (5 

g/L), glucose (40 g/L), NaHCO3 (1 g/L), and agar (15 g/L). During our initial screen of 

medium components, casamino acids were determined to be essential for the 

antimicrobial activity of S. mutans. Individual colonies grown on modified M9 agar were 

selected and screened for antimicrobial production using a standard deferred antagonism 

assay as outlined below. Colonies stabbed into a fresh modified M9 agar plate were 
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overlaid with M. luteus indicator strain, while simultaneously plating on a fresh master 

plate of each colony. Ten colonies producing the largest clearing were analyzed again. 

The colony that produced the largest zone was selected for further analysis. One 

possibility, clearing is proportionate to mutacin 1140 production in the minimal media 

environment, thus this strain was used as the inoculum in the optimization of mutacin 

1140 production in minimal media. 

 
Rapid procedure for optimizing fermentation conditions 

A stock solution of 100 μL aliquots of purified mutacin 1140 (provided by 

Oragenics Inc., Alachua FL) in 80% acetonitrile at a concentration of 10μg/mL was 

stored at 4�C and was use to compare mutacin 1140 production over different variables 

and across different samples. Small volume (20 mL) fermentations using a modified M9 

minimal medium (M9 medium, supplemented with casamino acids  and a 10% inoculum 

of S. mutans was used as our base medium for optimizing each variable in a shaking 

incubator at 200 rpm at 37�C for 24 hours. The inoculum was started from a 400 μL 

glycerol stock (109 CFU (colony forming unit)/mL) grown in 40 mL of modified minimal 

media supplemented with 0.3% yeast extract  (to help boost the inoculum growth rate) to 

an OD600 of 0.8 at 37�C.   

At completion of the fermentation, the samples were centrifuged at 23,000 x g for 

20 min and then the supernatants were collected. The collected supernatants were heated 

for 30 minutes at 65�C to kill any remaining bacteria. The resulting supernatant was 

assayed for mutacin 1140 production using the modified deferred-antagonism assay 

described below. Five microliters of the resulting supernatants were stabbed in triplicate 
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horizontally across a 100 mm Todd Hewitt-Yeast extract plate and the mutacin 1140 

stock solution was also stabbed in triplicate across each bioassay plate for comparison. 

Quantification of mutacin 1140 production was determined by the following formula:  

Mutacin production = diameter of culture liquor zone (mm)/diameter of mutacin 1140 

stock solution zone (mm). The ratio of each zone was averaged and the standard 

deviation was calculated using the averaged ratios from each fermentation (n = 3). This 

approach enabled the comparison of each variable tested across numerous plates.    

 
Antimicrobial assay 

A M. luteus deferred-antagonism assay is a qualitative assay for bactericidal 

activity. M. luteus is a mutacin sensitive strain with a nanomolar minimum inhibitory 

concentration (MIC). M. luteus was grown in Todd Hewitt-yeast extract to an OD600 of 

0.2. Then, 400 μL of these cells were added to 10 mL of top agar (M9 media, casamino 

acids 10 g/L, and agar 7.5 g/L). 5 ml of melted top agar containing the standardized 

suspension were added to each Petri dish containing approximately 20 mL of modified 

M9 media agar. Before the plates were overlaid with the top agar containing the indicator 

strain, individual colonies of S. mutans were stabbed into the modified M9 medium agar 

and placed inverted into a candle jar for 48 hours. Following two days of incubation, the 

stabbed colonies were then overlaid with the top agar containing M. luteus. The plates 

were then allowed to dry before being inverted and placed in a candle jar overnight at 

37°C. The following day the plates were checked to determine the relative size of the 

zone of inhibition created by the stabbed colonies. Zones of inhibitions were measured in 

units of millimeters. The modified deferred antagonism assay was performed as described 
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above for the deferred antagonism assay, except that 5μL of the supernatant of the 

overnight fermentations was stabbed instead of a bacteria colony into Todd Hewitt-yeast 

extract agar plates  and overlaid M. luteus in Todd Hewitt-yeast extract top agar (30 g 

Todd Hewitt Broth/L, 3 g yeast extract/L, and 7.5 g agar/L). Once the top agar on the 

Petri dish had solidified 5 μL of the cell free culture liquor was stabbed in triplicate on 

the plate. The plates were then allowed to dry before being inverted and placed in a 

candle jar overnight at 37°C. Zones of inhibitions were measured in units of millimeters. 

Supernatants from fermentations using our base medium was used as a positive control 

for mutacin 1140 production and each medium tested (minus the inoculum) was used as a 

negative control for antimicrobial activity. Colony forming units (CFU) were determined 

in duplicate by serial dilution and plating method. S. mutans grows in long chains, thus 

the CFU data is slightly variable.   

 
Quantification of mutacin 1140

Following optimization parameters described above, the supernatant of the culture 

broth was analyzed by RP-HPLC. RP-HPLC was done using a 4.6 x 250 mm C18 

column (Grace-Vydac, catalog 201TP54) on a Bio-Rad BioLogic F10 Duo Flow with 

Quad Tec UV-Vis Detector system. An acetonitrile gradient was established by varying 

the flow rate of Solvent A (99% acetonitrile-0.1% trifluoroacetic acid (TFA)) relative to 

Solvent B (Water-0.1% TFA) maintaining a constant flow rate of 1.0 mL/min and 

monitored at 220 nm. RP-HPLC protocol following a 1 mL injection consisted of a linear 

gradient (Solvent B, decreased from 95%-30% over a 30 min period), followed by an 

isocratic flow (Solvent B, 95% over a 5 min period). Mutacin 1140 eluted from the 
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column at approximately 56% solvent B. Quantification of mutacin 1140 was ascertained 

from peak volume. MALDI-TOF (ABI 4700 Proteomics Analyzer) was used, along with�

the M. luteus modified deferred-antagonism assay, to verify the HPLC mutacin fraction. 

�-cyano-4-hydroxycinnamic acid was used as the matrix for MALDI-TOF. �
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CHAPTER III 

RESULTS AND DISCUSSION 

 
Determining optimal concentration of calcium chloride for mutacin 1140 production 

Earlier experiments in the complex medium yeast extract showed that a high 

concentration of CaCl2 (5% w/v) was optimal for mutacin 1140 production [36]. Due to 

the importance of calcium chloride for mutacin 1140 production in broth, CaCl2 was the 

first component optimized. To determine the optimal concentration for CaCl2, the 

following percentages (w/v), 0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, and 1.5% were first 

investigated. Figure 4 presents the optimal concentration of CaCl2 for mutacin 1140 

production. The black columns in the figure correspond to antimicrobial activity, while 

the grey columns correspond to the CFU values. The optimal concentration for mutacin 

1140 production was 0.3% CaCl2. There was approximately a 40% increase in zone 

diameter as compared to 0.2 and 0.5% CaCl2. Interestingly there appeared to be a narrow 

window for promoting mutacin 1140 production. No activity was observed at 0.1% and 

1% CaCl2 concentrations. CaCl2 also appeared to be required for cell survival, since there 

were no CFUs when calcium was inabated from the media.  Furthermore, higher 

concentration of CaCl2 appeared to inhibit growth since there was an order of magnitude 

drop in cell density at 1.0 and 1.5% concentration compared to 0.5%. A 0.3% CaCl2 

concentration was used as our base medium for the following optimization experiments. 
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Figure 4.   Optimization of mutacin 1140 production by varying CaCl2 concentrations 
ranging from 0.0 to 1.5 %.  

Determining optimal concentration of biologically important metals for mutacin 

1140 production 

Several other inorganic salts can be tested for their effect on mutacin 1140 

production, but for the scope of this study the inorganic salts tested were MgSO4, ZnCl2, 

and FeCl3. Figure 5 presents the optimal concentration of MgSO4 for mutacin 1140 

production. The black columns in the figure correspond to antimicrobial activity, while 

the grey columns correspond to the CFU values. Magnesium ions are required in a 

variety of enzymatic reactions, including DNA replication. Mutacin 1140 production was 

absent when magnesium ions were not added (Figure 5). Interestingly, there was cellular 

growth without the addition of magnesium. Presumably, the small amount of yeast 

extract added to the inoculum provided a sufficient source of magnesium ions for growth. 

There was an interesting decrease in mutacin 1140 production between 60 and 480 

μg/mL of magnesium sulfate. These experiments were repeated showing the same 

13 
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phenomenon. Optimal production of mutacin 1140 occurred at 7,680 μg/mL (0.77% w/v) 

of MgSO4. However, the benefit of a high concentration of MgSO4 has never been 

mentioned in the production of other lantibiotics. The role of zinc ions had been shown to 

be important for the production of other lantibiotics [38-40].  Zinc is important for the 

activity of the post translational modification enzyme responsible for the formation of the 

lanthionine rings. Interestingly, mutacin 1140 production decreased when ZnCl2 was 

supplemented at concentrations between 20 and 40 μg/mL (Figure 6). The Black columns 

in the figure correspond to antimicrobial activity, while the grey columns correspond to 

the CFU values. Given the CFUs at these concentrations, the cells appeared to be healthy 

since they grew. Also of interest is that mutacin 1140 production was best when no zinc 

was supplemented in the media. If zinc is a requirement for the formation of the thioether 

linkages between the cysteine sulfhydryl groups and the didehydro amino acids, then 

presumably a small amount of zinc may be present in the inoculum which is sufficient for 

enzymatic activity. Nonetheless, supplementing with additional zinc should be avoided. 

Iron ions have an important role in the catalytic sites of several bacterial enzymes. 

Supplementing FeCl3 between 0 and 10 μg/mL had no effect on mutacin 1140 

production, however at concentrations above 10 μg/mL, a pronounced effect on S. 

mutans viability and mutacin 1140 production was observed (Figure 7). The black 

columns in the figure correspond to antimicrobial activity, while the grey columns 

correspond to the CFU values. It is interesting to note that there was a significant amount 

of mutacin 1140 produced when the media was supplemented with 80 μg/mL given that 

the cell density was >1000 fold less than the media containing no supplemented iron. 

Future experiments will explore whether the addition of iron at a later time point in the 
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fermentation can promote additional mutacin 1140 production. Perhaps bacterial growth 

is not an important criterion for mutacin 1140 production and that a later time period in 

which there is a higher cell density may afford more mutacin 1140 production by 

possibly inactivating other cellular activities that can down regulate mutacin 1140 

production.   

 

Figure 5.   Optimization of mutacin 1140 production by varying MgSO4 concentrations 
ranging from 0.0 to 7,680 μg/mL.  

 

 

Figure 6.   Optimization of mutacin 1140 production by varying ZnCl2 concentrations 
ranging from 0.0 to 40 μg/mL.  

 

15 
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Figure 7.   Optimization of mutacin 1140 production by varying FeCl3 concentrations 
ranging from 0.0 to 160 μg/mL.  

Screening  media supplemented with cystine 

Currently, the concentration of casamino acids in the base media is 10 mg/mL. 

Two amino acids, cysteine and tryptophan, do not survive the hydrolysis procedure of 

casein that is used for making casamino acids. Given that four of the 22 amino acids 

found in mutacin 1140 are cysteines, an experiment was designed to determine whether 

the addition of cystine would have an effect on the production of mutacin 1140. Cysteine 

was shown to boost the production of the lantibiotic gallidermin when supplemented in 

the fermentation media [32]. The following concentrations of cystine were tested; 0 

μg/mL, 100 μg/mL, 200 μg/mL, 400 μg/mL, and 800 μg/mL. The disulfide link between 

the two cysteines in cystine is readily reduced by the bacterium to give the corresponding 

thiol amino acid. The concentration of cystine for Mutacin 1140 production is presented 

in figure 8. The black columns in the figure correspond to antimicrobial activity, while 

the grey columns correspond to the CFU values. The addition of cystine to our minimal 

M9 production medium had no significant effect on the production of mutacin 1140 

16 
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(Figure 8). Possibly supplementing cystine may be important as the yield of mutacin 

1140 is improved and will again be explored in future fermentations. 

 

Figure 8.   Optimization of mutacin 1140 production by varying cystine concentrations 
ranging from 0.0 to 800 μg/mL.   

Screening sugars for determining optimal carbon source 

The base medium for the production of mutacin 1140 contains 4% glucose, which 

may not be the optimal carbon source for mutacin 1140 production. Several 

monosaccharide and disaccharide sugars were tested to determine the optimal carbon 

source. The monosaccharides glucose, galactose, fructose, xylose and ribose, as well as 

the disaccharides sucrose, maltose and lactose were tested at a 4% concentration (w/v). 

Production of mutacin 1140 was enhanced with the addition of lactose and galactose. 

Figure 9 presents the optimal concentration of monosaccharide and disaccharide sugars at 

4% (w/v) concentrations. The black columns in the figure correspond to antimicrobial activity, 

while the grey columns correspond to the CFU values. Carbon sources fructose, xylose, and 

ribose resulted in no or low mutacin 1140 production, while the CFUs suggested that 

these carbon sources did support growth. Optimal concentration of lactose and galactose 

17 
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in the fermentation media was not possible to determine because of the present scope of 

the research. 

 

Figure 9.   Optimization of mutacin 1140 production by varying monosaccharide and 
disaccharide sugars at 4% (w/v) concentrations.  

Determining optimal temperature and time for mutacin 1140 production 

Mutacin 1140 production was tested at 37, 32, and 27�C. There was minimal 

production of mutacin 1140 at 32 and 27�C over a 24 hour time period (data not shown). 

Therefore, fermentations at 37�C using the modified M9 minimal media appeared to be 

the optimal temperature for determining the effects that the other variables had on 

mutacin 1140 production. Temperatures between 37 and 32�C as well as higher 

temperatures were considered for future experiments. There was no difference in mutacin 

1140 production between the 24 hour and 48 hour samples at 37�C, which suggests that 

mutacin 1140 was produced during the 24 hour time period after inoculation. Samples 

were drawn hourly over a 24 hour time period to determine mutacin 1140 production 

(Figure 10). pH values of the fermentation broth listed in the figure was for each 2 hour 
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interval. Interestingly, there was no production until the ninth hour and production 

stopped at the twelfth hour. The pH over this time period ranged from 5.3 to 4.7. It is 

interesting to speculate that a lower pH is required for mutacin 1140 production. A 24 

hour time period appears to be sufficient for optimizing mutacin 1140 production, since 

other variables may promote a longer timeframe in which mutacin 1140 is produced and 

since the compound is stable in the supernatant over 24 hours. Once mutacin 1140 

production is completely optimized, scaling the time frame to peak mutacin 1140 

production will be reinvestigated.    

 

Figure 10.  Production of mutacin 1140 over a 24 hour time period.   

Optimized media  

 A fermentation at 37�C for 24 hrs using all the optimized variables in the 

modified M9 media, supplemented with 1% casamino acids, 0.1% NaCOH3, 0.3% CaCl2, 

0.77% MgSO4, and 4% lactose resulted in the supernatants having an antimicrobial 

activitiy greater than 1.0, demonstrating that production in a shaking incubator exceeded 

the concentration of the mutacin 1140 standard (10 mg/L) (data not shown). The 
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procedure was scaled from a 20 mL fermentation volume to a 500 mL fermentation 

volume in a 1 L bottle, which resulted in the same level of production (Figure 11). 

Translation of the procedure to 500 mL is important for future optimization studies in a 

controlled bioreactor. A serial 5 fold dilution assay of the 500 mL fermentation media 

also resulted in the same level of activity as was observed in the mutacin 1140 standard. 

The antimicrobial activity units for each five fold dilution of the mutacin 1140 standard 

and for the 500 mL fermentation are shown in Figure 11.  The antimicrobial activity units 

were calculated by taking the ratio of the diameter of each dilution to diameter of the first 

zone of the mutacin 1140 standard.  This shows that a 125 fold dilution resulted in an 

antimicrobial activity of 0.36, which was comparable to the activity seen in base 

modified M9 medium, containing 0.5% CaCl2 and 4% glucose. Therefore, the small 

volume fermentations in a shaking incubator method for optimizing mutacin 1140 

provided a rapid means of increasing the production by more than 100 fold. Confirmation 

that the antimicrobial activity observed in the fermentation came from RP-HPLC 

followed by MALDI mass determination. In Figure 12, the bioactive peak corresponds to 

the elution profile of mutacin 1140 eluting at 56% Water:Acetonitrile and the mass of the 

purified compound corresponds to the mass of mutacin 1140 which is 2266 Da. 
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Figure 11.   Modified deferred-antagonism assay of the mutacin standard and the 500 mL 

fermentation.   
 
 

 

Figure 12.   HPLC Chromatogram of purified mutacin 1140.    
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CHAPTER IV 

CONCLUSIONS AND FUTURE DIRECTIONS 

 
Several lantibiotics have been known for decades but they have not been 

extensively tested for their potential usefulness for treating infections. The principal 

reason for this is due to the difficulty of obtaining these molecules in cost effective 

amounts and purity that would enable their testing for the treatment of infections. One 

major draw back is the use of complex medium generally used for their production, 

which obstructs the development of an effective approach to extract and purify them from 

the culture liquor. 

Supplementations of MgSO4, CaCl2, and lactose were shown to promote mutacin 

1140 production, while ZnCl2 and FeCl3 appeared to impair production. The development 

of a small volume fermentation method enabled a rapid screen of several variables in a 

standard shaking incubator. Future experiments are planned using a 3L bioreactor. This 

will enable us to control for oxygen and pH, which should boost our current production 

[31-34]. Depending on the outcome of these experiments, the minimal medium approach 

may offer a significant advantage over production in complex medium yeast extract in 

terms of cost, as well as facilitating a more cost effective downstream purification 

method. Nevertheless, the small volume fermentation method described in this paper 

provides a useful method for optimizing the production of mutacin 1140 and may also be 

useful in the optimization of other antimicrobial substances. Furthermore, the current 
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yields of mutacin 1140 in minimal media will enable the production of isotopically 

labeled mutacin 1140 for nuclear magnetic resonance studies aimed at characterizing 

mutacin 1140’s structure and interactions within bacterial mimetic membranes. Also, 

production in minimal media will enable the use of an IPTG inducible S. mutans plasmid 

for the production of other peptides in the mutacin 1140 producing strain S. mutans 

JH1140 while taking advantage of the lantibiotic transporter and extracellular protease. 

Solution and solid phase peptide synthesis is the current method of choice for producing 

peptides. However, the procedure requires expensive automated equipment and reagents. 

Minimal media environment for the expression of peptides in S. mutans would facilitate 

isolation and purification of recombinant peptides, while taking advantage of the bacterial 

system to produce the peptides of choice. Small protein/peptides, under 5000 Da, are 

generally degraded in E. coli expression systems, thus, future work will be aimed at 

developing the lantibiotic producing stain S. mutans JH1140 to effectively produce non-

native peptides.   
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